
サイバーセキュリティ演習のためのシステム構築 [配布用]

注：　本稿では演習システムのドメイン名を「ysato.net」としたが、このドメイン名は任意である。演習システ

ムを構築する際は、本稿に示す「ysato.net」を「hoge.com」や「foo.xyz」などのように各自で適当なドメイン名に

置換することが望ましい。なぜならば、他人とドメイン名が重複すると、図 Aのように複数の演習システムを結

合したときに正しく名前解決が出来ないためである。

また、ルータのインターネット側ポート Fa0の IPアドレス「192.168.0.2」も「192.168.0.123」などのように、

他の演習システムの IPアドレスと重複しないように設定する。

さらに、複数の演習システムを結合した状態で動作させるためにはルータのポートフォワーディングを設定する

必要がある。ただし、本稿にはポートフォワーディングの設定手順が含まれていない (忘れていました)ため、自

習して設定されたい (ごめんなさい)。

イントラネット
192.168.2.0

イントラネット
192.168.1.0

図 A 複数の演習システムを結合したときの構成図

目次

1 はじめに 1

2 イントラネット 1

2.1 サーバの公開 . 1

2.2 セキュリティ対策 . 2

3 脆弱性攻撃 4

3.1 SQLインジェクション . 4

3.2 XSS . 4

3.3 CSRF . 4

4 システムの設計 5

4.1 ネットワーク構成 . 5

4.2 システム環境 . 6

4.3 マスターイメージ . 6

4.4 DNSサーバ . 6

4.5 ディレクトリサーバ . 7

4.6 Webサーバ . 7

4.7 ファイアーウォール . 8

5 システムの構築 9

5.1 マスターイメージの作成 . 9

5.2 マスターイメージの複製 . 9

5.3 サーバの構築 . 9

5.4 システムの結合 . 10

6 検証実験 11

6.1 実験方法 . 11

6.2 実験環境 . 11

6.3 実験結果 . 12

7 おわりに 14

付録 A マスターイメージの作成 15

A.1 CentOS7のインストール . 15

A.2 パーティションの拡張 . 15

A.3 ソフトウェアのインストール . 15

付録 B DNSサーバの実装 17

B.1 ビューの設定 . 17

B.2 正引きゾーンの作成 . 18

B.3 逆引きゾーンの作成 . 18

B.4 IPv6の無効化 . 19

B.5 順序設定ファイルの変更 . 19

B.6 ファイアウォールの設定 . 19

B.7 NICの設定 . 19

i

B.8 BINDの起動 . 20

付録 C Webサーバの実装 21

C.1 脆弱サイトの作成 . 21

C.2 MariaDBの起動 . 28

C.3 データベースの作成 . 28

C.4 ファイアウォールの設定確認 . 28

C.5 NICの設定 . 29

C.6 Apacheの起動 . 29

付録 D ファイアーウォールの実装 30

D.1 Snort . 30

D.2 ネットワーク . 33

D.3 ファイアーウォール . 35

付録 E ルータの設定 37

E.1 接続 . 37

E.2 IPアドレスの設定 . 37

E.3 ルーティングの設定 . 38

E.4 設定の確認 . 38

E.5 コンフィグレーションの保存 . 38

ii

1 はじめに

身の回りのあらゆるものがネットワークに繋がるようになり、人とネットワークの繋がりはますます密接なも

のになりつつある。例えば、洗濯機や冷蔵庫がネットワークに接続されるスマート家電は、スマートフォンによる

戸外からの遠隔操作が可能である。また、2020年の東京オリンピック・パラリンピックを控え、日本を標的とし

たサイバー攻撃の増加が懸念されている。従って、現在、サイバーセキュリティ対策は極めて重要な課題である。

そのため、本稿では、サイバーセキュリティに関する実践的な演習が可能なシステムを設計・構築する。構築す

るシステムは、イントラネットの構成をモデルにすることで、実際のセキュリティインシデント対応に似た演習を

行うことができる。また、サーバマシンには Raspberry Pi 2を使用することで、安価かつ省スペースなシステムを

実現することができる。

2 イントラネット

イントラネット (Intranet)は、企業内ネットワークを意味する用語である。イントラネットでは、インターネッ

トと同じ技術を用いて、企業の利便性を高めるためのネットワークが構築される。図 1に、企業のネットワーク

構成例 [1]を示す。

図 1 企業のネットワーク構成例

以下に、イントラネットで用いられる技術についての解説を示す。

2.1 サーバの公開

インターネット上で企業の情報を公開するために、企業が自社のホームページを開設することがある。これに

は、Webサーバや DNSサーバの設置が不可欠である。また、企業の内外で IPアドレスを変換する仕組みも必要

となる。

1

2.1.1 Webサーバ

Webサーバは、クライアントのコンピュータに対して、HTMLドキュメントなどのWebコンテンツを提供す

るサーバである。このWebコンテンツの送受信には、HTTPという通信プロトコルが標準的に用いられる。

また、Webサーバ上でプログラムを実行し、動的にWebコンテンツを生成することが可能である。

2.1.2 DNSサーバ

DNS(Domain Name System) サーバは、ドメイン名と IP アドレスの対応関係を管理するサーバである。DNS

サーバは、コンテンツサーバとキャッシュサーバの 2種類に大別される。

コンテンツサーバは、ゾーンと呼ばれるドメイン名と IPアドレスの対応表を保持し、このゾーン情報に基づい

て、問い合わせに対する名前解決 (ドメイン名と IP アドレスの変換) を行う。ゾーンには正引きゾーンと逆引き

ゾーンがあり、ドメイン名を IPアドレスに変換するためのゾーンを正引きゾーンという。逆に、IPアドレスをド

メイン名に変換するためのゾーンを逆引きゾーンという。

これらのゾーンは、レコードと呼ばれるデータの集合によって定義されている。表 1に主要なレコードの種別

と意味を示す。表中のホスト名とは、ゾーン内でコンピュータを識別するための名前である。

表 1 主要なレコードの種別と意味

種別 意味

SOA ゾーン情報の定義

NS DNSサーバ名

A ホスト名に対する IPアドレス

PTR IPアドレスに対するホスト名

CNAME ホスト名の別名

コンテンツサーバが自身の保持する情報を元に名前解決を行うのに対して、自身では情報を保持しない種類の

DNSサーバをキャッシュサーバと呼ぶ。問い合わせを受けたキャッシュサーバは、名前解決が完了するまで反復

的にコンテンツサーバへの問い合わせを行い、最終的な結果のみを回答する。同時に、キャッシュサーバは回答を

一定期間キャッシュすることで、名前解決のための通信を最小限に抑えることができる。

このように、DNSサーバはコンテンツサーバとキャッシュサーバに分類される。しかし、DNSサーバにビュー

を定義することで、問い合わせ元に応じて DNSサーバの種類を変えることが可能となる。そのため、1つのサー

バ内でコンテンツサーバとしてもキャッシュサーバとしても振る舞うことができるようになる。

また、DNSサーバのフォワーダ機能では、自身で解決できない要求をフォワーダに指定した DNSサーバに転

送することが可能である。

2.1.3 NAT・IPマスカレード

NAT(Network Address Translation) は、2 つのネットワーク間で通信するために、IP アドレスの自動変換を行

う技術である。また、IPアドレスに加えて、ポート番号の変換を行う技術を IPマスカレード (IP masquerade)と

いう。

これらの技術は、グローバル IPアドレスを持つインターネット上のクライアントが、プライベート IPアドレス

を持つイントラネット内のサーバと通信を行うときなどに用いられる。

2.2 セキュリティ対策

イントラネットは、インターネットと相互の技術を用いて構成されるため、外部からの侵入に対して脆弱であ

る。そのため、ファイアーウォールや DMZなどを用いたセキュリティ対策が重要となる。

2

2.2.1 ファイアーウォール

ファイアーウォールは、設定されたポリシーに従って、ネットワークからの通信を許可または遮断するシステム

である。ファイアーウォールは、OSI参照モデルのネットワーク層で動作するパケットフィルタリング型やアプ

リケーション層で動作するアプリケーションゲートウェイ型などに分けられる。パケットフィルタリング型では、

通信の IPアドレスやポート番号によって通信を遮断するか許可するかの判断を行う。対して、アプリケーション

ゲートウェイ型では、通信のデータ部分を参照するため、より細かい通信制御が可能となる。

これらのファイアーウォールを導入することで、外部からの不要な通信を遮断するなどのセキュリティ対策が

可能になる。

2.2.2 DMZ

インターネットに公開するサーバの配置を目的とした、インターネットともイントラネットとも隔離されたネッ

トワークを DMZ(DeMilitarized Zone)と呼ぶ。

図 2に示すように、DMZはファイアーウォールによってネットワーク的に隔離される。そして、インターネッ

トから直接通信可能な範囲を DMZに限定することで、イントラネットには外部からの攻撃が及ばないようにす

る。また、インターネットと DMZの双方に対してイントラネットからの通信を許可し、イントラネットに属する

クライアントの利便性を損なわないようにする。従って、DMZを設けることで、安全性と利便性の両立が実現さ

れる。

図 2 ファイアーウォールによる通信制御

2.2.3 IDS・IPS

IDS(Intrusion Detection System)は、侵入検知システムである。IDSには、ネットワークを流れる通信を監視す

るネットワーク型 IDS(NIDS)と、ホストへの侵入やファイル改ざんを検知するホスト型 IDS(HIDS)がある。

侵入の検知のみを行う IDSに対して、通信の遮断を可能にしたシステムが IPS(Intrusion Prevention System)で

ある。IPSでは、攻撃と判断された通信をリアルタイムに遮断することで、攻撃を未然に防ぐことが可能となる。

一般的に、IDSや IPSは、ファイアーウォールと併用され、ファイアーウォールで防ぐことができなかった攻撃

を検知・遮断するために用いられる。

2.2.4 ディレクトリサーバ

ディレクトリサーバは、ネットワーク上のリソースを管理するサーバである。ディレクトリサーバを使用する

ことで、ネットワーク上に分散した機器の資源管理やユーザアカウントの認証管理を一元化することが可能とな

る。つまり、管理者によるリソース管理が簡単になると同時に、ユーザは一度の認証によって複数のリソースが利

用可能になる。

また、リソースに対する権限の管理が可能で、イントラネット内部からの不正アクセス対策としても有効に活用

することができる。

3

3 脆弱性攻撃

ソフトウェアにおける脆弱性は、プログラムの実装ミスや設計上の欠陥によって発生する。攻撃者によってこ

れらの脆弱性が悪用されると、システムのマルウェア感染や情報漏洩などの被害が生ずる恐れがある。本節では、

Webアプリケーションにおける脆弱性を悪用した代表的な攻撃手段について解説する。

3.1 SQLインジェクション

SQLインジェクションは、プログラムからデータベースを操作する場合に起こり得る脆弱性を利用した攻撃で

ある。特にWebアプリケーションにおいては、Webアプリケーション利用者が指定したキーワードを動的に SQL

文に組み込んでデータベースを操作することがある。

例えば、利用者が入力した文字列を元に検索を行うとき、次のような SQLがデータベースに発行される。

SELECT * FROM user WHERE name = ’検索文字列 ’;

この SQL文は、nameカラムの値が検索文字列と一致するレコードを取得する。ここで、検索文字列として「’ OR

’1’ = ’1」という文字列が与えられたとすると、SQL文は次のようになる。

SELECT * FROM user WHERE name = ’’ OR ’1’ = ’1’;

この SQL文は、nameカラムの値が空、もしくは’1’ = ’1’となるレコードを取得する。すなわち、この SQL文の

条件は常に真となるため、userテーブルに格納されている全てのレコードが取得される。

以上が SQLインジェクションと呼ばれる攻撃の原理である。この攻撃においては、入力を適切にエスケープ処

理することが基本的な対策になる。

3.2 XSS

XSS(Cross Site Scripting)は、動的に作成される HTMLに任意のスクリプトを埋め込むことができる脆弱性を

利用した攻撃である。この脆弱性は、Webアプリケーション利用者の入力値をそのまま HTMLに組み込んで配信

するプログラムに存在する。

例として、次の HTMLコードを考える。

<p> 入力値 の結果を表示します。 </p>

このコードにおいて、入力値には Web アプリケーション利用者が入力する任意の値が入る。ここで、入力に

「<script>alert(”XSS”)</script>」という JavaScript コードが与えられたとすると、HTML コードは次のように

なる。

<p> <script>alert("XSS")</script> の結果を表示します。 </p>

この HTMLコードが含まれるWebページをブラウザで表示すると、JavaScriptによってアラートダイアログが表

示される。

このように、XSSにおいては、利用者のブラウザ上で任意のスクリプトが実行される可能性がある。これを防

ぐためには、入力を適切にエスケープ処理してから HTMLに組み込むといった対策が有効である。

3.3 CSRF

CSRF(Cross Site Request Forgeries) は、Web アプリケーション利用者の意図しない操作を、別の Web アプリ

ケーションに対して実行させる攻撃である。

4

例えば、Webアプリケーション上のスクリプトを実行可能な URLを含むメールが、攻撃者によって送信された

とする。このメールの受信者が、メールに含まれる URLのリンクをクリックすると、受信者は意図せずWebア

プリケーション上のスクリプトを実行することになる。

このスクリプトの内容によっては、掲示板に書き込みをさせられたり、オンラインショップでの買い物をさせら

れたりする可能性がある。CSRFの対策としては、外部サイトからのリクエストを拒否するようにすることなどが

挙げられる。

4 システムの設計

本節では、サイバーセキュリティに関する実践的な演習が可能なシステムを設計する。

4.1 ネットワーク構成

演習システムのネットワーク構成を図 3に示す。

図 3 演習システムのネットワーク構成

演習システムでは、ネットワークを 4つのサブネットに分けて運用する。表 2にサブネットの構成を示す。

表 2 演習システムのサブネット構成

ネットワークアドレス 役割

192.168.2.0/26 DMZ

192.168.2.64/26, 192.168.2.128/26 イントラネット

192.168.2.192/26 ファイアーウォール -ルータ間

ネットワークアドレス 192.168.2.0/26は DMZに割り当てる。192.168.2.64/26と 192.168.2.128/26はイントラ

ネットに割り当てる。192.168.2.192/26 はファイアーウォールとルータ間に割り当てるネットワークアドレスで

ある。

5

4.2 システム環境

演習システムを構成する主要な機器を表 3に示す。

表 3 演習システムの使用機器

役割 製品名 製造元

サーバマシン Raspberry Pi 2 Model B Raspberry Pi Foundation

サーバのストレージ MicroSDHC 32GB Team

ルータ Cisco1812J Cisco

スイッチ EHC-G05PA-B ELECOM

USB-LANアダプタ USB-LAN100R PLANEX

4.3 マスターイメージ

本稿では、各サーバの構築作業にかかる負担を減らすために、全てのサーバに共通する設定があらかじめ行って

あるマスターイメージを作成する。以下に、マスターイメージの構成を示す。

動作する OS

　 CentOS7.2.1511.el7を使用する。

ユーザ名とパスワード

　ユーザ名は「root」、パスワードは「centos」とする。

導入するソフトウェア

　導入するソフトウェアを表 4に示す。

表 4 導入するソフトウェア

役割 ソフトウェア名・パッケージ名

Webサーバ httpd, mariadb, mariadb-server, php-mysql

DNS bind, bind-utils

ディレクトリサービス openldap-servers, openldap-clients, php-ldap

IDS・IPS Snort, DAQ, libpcap, pcre, libdnet, libnfnetlink, libmnl, libnetfilter queue

エディタ emacs, vim

ユーティリティ wget, ntp

開発ツール Development Tools, make, zlib

プログラミング言語 perl, php, ruby, java-1.8.0-openjdk

　ソフトウェアのインストールには基本的に yumを使用する。ただし、Raspberry Pi 2 Model Bのアーキ

テクチャ (ARMv7) に対応するパッケージが存在しない場合は、手動にてコンパイルとインストールを行

う。また、開発者向けのソフトウェアがまとめられた Development Toolsパッケージグループをインストー

ルすることで、コンパイルに必要な環境を構築する。

4.4 DNSサーバ

DNS サーバは、広く普及している BIND9 を使用し、コンテンツサーバとして構築する。また、IPv6 を除く

ネットワークからの利用を許容し、全てのネットワークからの名前解決要求に応えるビューを externalビューと

して定義する。externalビューの定義を表 5に示す。

6

表 5 externalビューの定義

項目 設定

ビュー名 external

ビューが適用される範囲 全てのネットワーク

ゾーン転送 無効

再起問い合わせ 無効

正引きゾーン ysato.net

逆引きゾーン 2.168.192.in-addr.arpa

正引きゾーンファイル名 ysato.net.wan

逆引きゾーンファイル名 2.168.192.in-addr.arpa

表 6に、DNSサーバが解決するドメイン名と IPアドレスの対応を示す。

表 6 ドメイン名と IPアドレスの対応

機能 ドメイン名 IPアドレス

DNSサーバ dns.ysato.net 192.168.2.2

ディレクトリサーバ ldap.ysato.net 192.168.2.3

Webサーバ ysato.net 192.168.2.4

www.ysato.net (CNAME)

4.5 ディレクトリサーバ

ディレクトリサーバは、オープンソースソフトウェアの OpenLDAPを使用し、架空の会員情報の管理・提供を

行う。

サイバーセキュリティ演習システムには、システムの共同開発者である***が設計と実装を担当したディレクト

リサーバを使用する。そのため、本稿では、ディレクトリサーバに対する具体的な設計や実装方法は示さず、サー

バ間の連携に最小限必要な事項についてのみ示す。ディレクトリサーバに関する詳細については、***の報告書を

参照されたい。

4.6 Webサーバ

Web サーバでは、Web アプリケーションの脆弱性を体験できるサイト (脆弱サイト) を提供する。脆弱サイト

は、会員制のサイトで、会員データベースの検索機能を持つように構築する。また、脆弱サイト上では、SQLイ

ンジェクションや XSSなどの代表的な脆弱性攻撃を実行できるようにする。

脆弱サイトの実装には、サーバサイドスクリプト言語の PHP とデータベースシステムの MariaDB を主

に使用する。また、脆弱サイトへのログインにはディレクトリサーバの LDAP を使用し、ログイン状態の

管理には Cookie を使用する。さらに、Web サーバソフトウェアの Apache2 を使用し、外部のブラウザから

http://192.168.2.4/exploit_site/でアクセスできるようにする。

図 4に脆弱サイトの構成を示す。

まず、脆弱サイト利用者は index.php にアクセスする。そして、会員名とパスワードを入力し、ログインを行

う。ログイン時には、ldapserver.phpに定義された関数を呼び出して認証を試行する。

認証に成功すると、会員検索フォームを提供する main.phpに遷移する。main.phpで会員検索が実行されると、

database.phpがデータベースから検索条件に一致する会員を取得し、検索結果が search.phpに表示される。

また、logout.phpにアクセスすることでログアウトが完了する。

7

図 4 脆弱サイトの構成

脆弱サイトで使用するデータベース名を webとする。webデータベースには、ID、名前、電話番号、パスワー

ドを格納するための userテーブルを定義する。表 7に userテーブルの定義とレコードを示す。

表 7 userテーブルの定義とレコード

id name tel pass

1 hogeo 1001 hoge

2 pugeo 1012 puge

3 taro 1008 taro

4 fooko 1003 foo

5 barko 1005 bar

ただし、脆弱サイトのログイン認証は LDAPに委譲するため、このデータベースが実際のログイン処理に使用

されることはない。これは SQLインジェクションを実行するために使用されるデータベースである。

4.7 ファイアーウォール

ファイアーウォールは、CentOS7標準のファイアーウォールサービスである firewalldを使用し、パケットフィ

ルタ型として構築する。しかし、Raspberry Pi 2 Model Bの LANポートは 1つしかないため、USB-LANアダプ

タを使用した LANポートの拡張を行う。Raspberry Pi 2 Model B標準の NICを eth0、USBによって拡張された

NICを eth1として、表 8に示すようにゾーンを設定する。

表 8 firewalldのゾーン定義

ゾーン名 インタフェース 許可するサービス IPマスカレード

dmz eth0 http, ssh, dns 有効

external eth1 http, ssh, dns 無効

また、このサーバには、ファイアーウォールの他に IPSも導入する。IPS にはオープンソースソフトウェアの

Snortを使用し、HTTPのパケット検査を行う。このため、HTTPのパケットは Snortへ転送するように firewalld

の設定を行う。

8

5 システムの構築

前節で設計したシステムの構築手順を順に示す。

5.1 マスターイメージの作成

マスターイメージの作成手順を以下に示す。実際のコマンド操作については付録 Aを参照されたい。

1. MicroSDカードに CentOS7のインストールを行う。

2. パーティションの拡張を行う。

3. ソフトウェアのインストールを行う。

5.2 マスターイメージの複製

マスターイメージの作成に使用した Raspberry Pi 2 Model B から MicroSD カードを取り出し、このカードの

クローンを 3枚作成する。クローンの作成には、作業用のコンピュータが必要となる。作業用のコンピュータが

Linuxであれば、ddコマンドを使用してクローンの作成を行う。コンピュータがWindowsであれば、ディスクイ

メージのバックアップとリカバリーが可能な任意のアプリケーションを使用する。

作成したクローンとマスターを合わせた 4枚のMicroSDカードを、ファイアーウォール、DNSサーバ、ディレ

クトリサーバ、Webサーバに使用する Raspberry Pi 2 Model Bへそれぞれ挿入する。また、マスターイメージの

作成に使用した Raspberry Pi 2 Model Bは、上記した 4台のサーバのいずれかに転用する。

5.3 サーバの構築

以下に、サーバごとに行う構築手順を示す。ただし、サーバの構築はインターネットと通信可能な環境で行うも

のとする。

5.3.1 DNSサーバの構築

DNSサーバの構築手順を以下に示す。実際のコマンド操作については付録 Bを参照されたい。

1. ビューの設定を行う。

2. 正引きゾーン及び逆引きゾーンを作成する。

3. IPv6の無効化を行う。

4. 名前解決の順序を変更する。

5. ファイアーウォールの設定を行う。

6. NICの設定を行う。

7. BINDの起動確認を行う。

5.3.2 ディレクトリサーバの構築

ディレクトリサーバの構築を行う。構築の手順については***の報告書を参照されたい。

5.3.3 Webサーバの構築

Webサーバの構築手順を以下に示す。実際のコマンド操作については付録 Cを参照されたい。

1. 脆弱サイトを作成する。

2. MariaDBの起動を行う。

3. データベースを作成する。

9

4. ファイアーウォールの設定確認を行う。

5. NICの設定を行う。

6. Apacheの起動確認を行う。

5.3.4 ファイアーウォールの構築 (Snortの設定)

ファイアーウォールの構築は、Snortの設定、ネットワークの設定、ファイアーウォールサービスの設定に大別

される。このうち、ネットワークとファイアーウォールサービスの設定を行うためには、ファイアーウォールに使

用している Raspberry Pi 2 Model Bが 2つのネットワークに接続されている環境を要する。よって、現段階では

Snortの設定のみを行い、その他の設定はシステムの結合時に行う。

以下は、Snortの設定手順である。実際のコマンド操作については付録 D.1を参照されたい。

1. ルールファイルのダウンロードを行う。

2. ルールファイルの配置を行う。

3. ローカルルールの設定を行う。

4. ブラックリストファイルとホワイトリストファイルの作成を行う。

5. Snortの動作設定を行う。

6. グループとユーザの作成を行う。

7. パーミッションの変更を行う。

この実装段階では、Snortは動作しないため、付録 D.1.9に示した起動確認は行わない。

5.4 システムの結合

設計したネットワーク構成に従い、ルータとスイッチ及びこれまでに構築した 4台のサーバを LANケーブルで

接続する。そして、演習システム内部と外部の間で通信を実現するために、ルータとファイアーウォールの設定を

行う。

5.4.1 ルータの設定

ルータの設定手順を以下に示す。実際のコマンド操作については付録 Eを参照されたい。

1. 作業用コンピュータとルータの接続を行う。

2. インタフェースに IPアドレスを設定する。

3. ルーティングの設定を行う。

4. 設定の確認を行う。

5. コンフィグレーションの保存を行う。

5.4.2 ファイアーウォールの構築 (ネットワークとファイアーウォールサービスの設定)

ルータとスイッチの電源が投入されている状態で、ネットワークの設定とファイアーウォールサービスの設定

を行う。ネットワーク機器の電源を投入しておく理由は、ファイアーウォールが持つ 2つの NICを有効にするた

めである。

まず、以下に示す手順に従って、ネットワークを設定する。実際のコマンド操作については付録 D.2を参照さ

れたい。

1. NICの設定を行う。

2. ルーティングの確認を行う。

次に、以下に示す手順に従って、ファイアーウォールサービスを設定する。実際のコマンド操作については付録

D.3を参照されたい。

10

1. ゾーンの設定を行う。

2. パケットの転送設定を行う。

3. 設定の反映と確認を行う。

最後に、設定した Snortの動作確認を付録 D.1.9を参考に実行する。

6 検証実験

本節では、構築したサイバーセキュリティ演習システムが設計通りに動作するかどうかを検証する。

6.1 実験方法

以下に示す手順に従って、演習システムの動作確認を行う。

1. 動作確認を行うためのクライアントを演習システムのインターネット側に用意する。クライアントのデ

フォルトゲートウェイには、ルータの Fa0に設定した IPアドレスを指定する。また、クライアントが使用

する DNSサーバには、演習システム内の DNSサーバを指定する。

2. 演習システムに電源を投入する。Snortはファイアーウォール起動時に自動起動しないため、手動にて起動

しておく。

3. クライアント上でブラウザを起動し、脆弱サイト (http://ysato.net/exploit_site/)にアクセスする。

これにより、DNSサーバによる名前解決、Webサーバの動作、ファイアーウォールの設定とルーティング、

ルータのルーティングが行われていることを確認する。

4. 脆弱サイトのログインフォームで、Nameに「hogeo」、Passwordに「hoge」と入力し、ログインを実行す

るために「Sign In」ボタンを押す。これにより、ディレクトリサーバの動作を確認する。

5. 会員検索フォームで、Name に「hogeo」を入力し、「検索」ボタンを押下して検索を行う。検索結果に、

Nameが「hogeo」のレコードが表示されていることを確認する。これにより、データベースの動作を確認

する。

6. ブラウザの戻る機能を使用し、会員検索フォームに戻る。Nameに「’ OR ’1’=’1」を入力して、「検索」ボ

タンを押す。検索結果では、レコードが 5件表示されていることを確認する。これにより、脆弱サイトの

SQLインジェクション脆弱性を確認する。

7. 会員検索フォームに戻る。Nameに「<script>alert(”XSS”)</script>」を入力して、「検索」ボタンを押す。

画面遷移後、ブラウザにアラートダイアログが表示されることを確認する。これにより、脆弱サイトの XSS

脆弱性を確認する。確認後、「OK」ボタンを押してアラートダイアログを閉じる。

8. 会員検索フォームに戻る。ブラウザ上でタブを新規作成し、http://ysato.net/exploit_site/logout.

phpにアクセスする。その後、会員検索を実行していたタブでページを更新すると、ログイン画面に遷移す

ることを確認する。これにより、脆弱サイトの CSRF脆弱性を確認する。

9. SSHクライアントを起動し、ファイアーウォール (192.168.2.253)に SSH接続する。ユーザ名は「root」で

あり、パスワードは「centos」である。SSH接続後、コマンドラインに「tail /var/log/snort/alert」と入力し、

クライアントとWebサーバ間の通信が IPSによって検知されていることを確認する。

6.2 実験環境

演習システムのインターネット側に、手順を実行するためのクライアントを用意した。表 9にクライアントの

システム環境を示す。また、表 10にクライアントのネットワーク設定を示す。

11

表 9 クライアントのシステム環境

役割 ソフトウェア

OS Windows 10 Pro (OSビルド 10586.104)

ブラウザ Microsoft Edge 25.10586.0.0

SSHクライアント Tera Term Version 4.79

表 10 クライアントのネットワーク設定

項目 設定値

IPアドレス 192.168.0.90

デフォルトゲートウェイ 192.168.0.2

DNSサーバ 192.168.2.2

6.3 実験結果

http://ysato.net/exploit_site/にアクセスしたときのブラウザ表示結果を図 5に示す。また、Nameに

「hogeo」、Passwordに「hoge」と入力し、ログインを実行した後の表示結果を図 6に示す。

図 5 http://ysato.net/exploit_site/ にアクセ

スしたときの画面
図 6 ログイン後の画面

図 5より、ドメイン名を用いて脆弱サイトにアクセスできたことが分かる。さらに、脆弱サイトにログインで

きたことが図 6より分かる。

図 6 のページにおいて、Name に「hogeo」を入力したときの検索結果を図 7 に示す。また、Name に「’ OR

’1’=’1」を入力したときの検索結果を図 8に示す。

12

図 7 hogeoの検索画面 図 8 ’ OR ’1’=’1の検索画面

図 7より、検索が成功したことが分かる。さらに、図 8より、SQLインジェクション攻撃が成功したことが分

かる。

図 6 のページにおいて、Name に「<script>alert(”XSS”)</script>」を入力したときの検索結果を図 9 に示す。

また、新しいタブで http://ysato.net/exploit_site/logout.phpにアクセスした後、図 6のページを更新

したときの表示結果を図 10に示す。

図 9 <script>alert(”XSS”)</script>の検索画面 図 10 ページ更新後の画面

図 9より、XSS攻撃が成功したことが分かる。また、図 10より、CSRF攻撃が成功したことが分かる。

ファイアーウォールで tail /var/log/snort/alertコマンドを実行した結果をリスト 1に示す。

リスト 1 tail /var/log/snort/alertの実行結果

[root@rpi2 ˜]# tail /var/log/snort/alert

01/02-12:22:49.219971 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62079 -> 192.168.2.4:80

01/02-12:23:02.900935 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62129 -> 192.168.2.4:80

01/02-12:23:02.926768 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62130 -> 192.168.2.4:80

01/02-12:23:03.000959 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62132 -> 192.168.2.4:80

01/02-12:23:16.665513 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62180 -> 192.168.2.4:80

01/02-12:23:21.485153 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62191 -> 192.168.2.4:80

13

01/02-12:25:36.819134 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62298 -> 192.168.2.4:80

01/02-12:25:44.667996 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62306 -> 192.168.2.4:80

01/02-12:25:58.381064 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62328 -> 192.168.2.4:80

01/02-12:26:02.218114 [**] [1:1000027:1] HTTP/80 Rule [**] [Priority: 0] {TCP}

192.168.0.90:62334 -> 192.168.2.4:80

リスト 1より、1月 2日の 12時 20分頃に 192.168.0.90から 192.168.2.4への HTTP通信が行われていたこと

が分かる。

7 おわりに

本稿では、サイバーセキュリティの実践的な演習が可能なシステムを設計し、構築の手順について示した。ま

た、構築したシステムを使用し、Webアプリケーションに対する脆弱性攻撃を実行することで、システムの具体

的な使用例を提示した。

今後の課題は、IPSの機能を活用することである。まず、Snortには正規表現を用いてパケットのパターンマッ

チングを行う機能が存在するが、本稿では機能させることができなかった。これが機能するようになると、シス

テムを攻撃するだけでなく、システムを保護するためのセキュリティ演習も行うことができるようになる。また、

SIEMなどを導入し、Snortが蓄積するログの視覚的な分析やパケットのリアルタイムなレポーティングができる

ようになると、より実践的なインシデント対応やディジタルフォレンジックなどの演習が可能になる。以上の点

は、今後の課題としたい。

参考文献

[1] イントラネットを利用するための運用上のセキュリティ対策, https://www.ipa.go.jp/security/fy18/

reports/contents/enterprise/1.pdf (参照 2016-02-23).

14

付録 A マスターイメージの作成

マスターイメージを作成するための手順を以下に示す。

A.1 CentOS7のインストール

まず、Raspberry Pi 2用の CentOS7イメージ (CentOS-Userland-7-armv7hl-Minimal-1511-RaspberryPi2.img.xz)

を http://mirror.centos.org/altarch/7/isos/armhfp/ よりダウンロードする。次に、ダウンロードした

ファイルからイメージファイルを展開し、MicroSD カードに書き込む。書き込みが終わったら、Raspberry Pi 2

Model BにMicroSDカードを挿入し、CentOS7の起動を確認する。ユーザ名の初期設定は「root」であり、パス

ワードの初期設定は「centos」である。

A.2 パーティションの拡張

パーティションを拡張するために、空の rootfs-repartitionファイルを作成し、再起動する。

[root@rpi2 ˜]# touch /.rootfs-repartition

[root@rpi2 ˜]# reboot

再起動後、dfコマンドによりパーティションが拡張されていることを確認する。

[root@rpi2 ˜]# df -H

Filesystem Size Used Avail Use% Mounted on

/dev/root 31G 692M 29G 3% /

devtmpfs 482M 0 482M 0% /dev

tmpfs 486M 0 486M 0% /dev/shm

tmpfs 486M 6.4M 480M 2% /run

tmpfs 486M 0 486M 0% /sys/fs/cgroup

/dev/mmcblk0p1 315M 67M 248M 22% /boot

tmpfs 98M 0 98M 0% /run/user/0

A.3 ソフトウェアのインストール

yumを使用して、マスターイメージにソフトウェアのインストールを行う。しかし、Snortと DAQは ARMv7

向けパッケージが存在しないため、手動にてコンパイルとインストールを行う。

また、以下の手順はインターネットと通信可能な環境で行うものとする。ネットワークの設定は、インターネッ

トに繋がった LANケーブルを Raspberry Pi 2 Model Bの LANポートに挿入したときに自動で行われるため、特

に操作をする必要はない。

A.3.1 yumによるインストール

まず、インストールされているソフトウェアのアップデートを行う。その後、ソフトウェアのインストールを

行う。

[root@rpi2 ˜]# yum update

[root@rpi2 ˜]# yum groupinstall "Development Tools" --skip-broken

[root@rpi2 ˜]# yum install httpd mariadb mariadb-server php-mysql bind bind-utils

openldap -servers openldap-clients php-ldap libpcap libpcap-devel pcre pcre-devel

libdnet libdnet-devel libnfnetlink libnfnetlink -devel libmnl libmnl-devel

libnetfilter_queue libnetfilter_queue -devel emacs vim wget ntp maek zlib zlib-devel

java -1.8.0-openjdk java -1.8.0-openjdk-devel perl php ruby

15

A.3.2 DAQと Snortのインストール

DAQと Snortをインストールする前に、CentOS7上の時刻を設定する。時刻が正しくない場合、DAQと Snort

のコンパイルに失敗する。時刻の設定手順を次に示す。

[root@rpi2 ˜]# cp -p /usr/share/zoneinfo/Japan /etc/localtime

[root@rpi2 ˜]# ntpdate ntp.nict.jp

DAQのインストール手順を次に示す。

[root@rpi2 ˜]# wget https://www.snort.org/downloads/snort/daq-2.0.6.tar.gz

[root@rpi2 ˜]# tar xvfz daq-2.0.6.tar.gz

[root@rpi2 ˜]# cd daq-2.0.6/

[root@rpi2 daq-2.0.6]# ./configure

以下の出力を確認

Build NFQ DAQ module....... : yes

[root@rpi2 daq-2.0.6]# make

[root@rpi2 daq-2.0.6]# make install

Snortのインストール手順を次に示す。

[root@rpi2 ˜]# wget https://www.snort.org/downloads/snort/snort -2.9.8.0.tar.gz

[root@rpi2 ˜]# tar xvfz snort -2.9.8.0.tar.gz

[root@rpi2 ˜]# cd snort -2.9.8.0/

[root@rpi2 snort -2.9.8.0]# ./configure

[root@rpi2 snort -2.9.8.0]# make

[root@rpi2 snort -2.9.8.0]# make install

16

付録 B DNSサーバの実装

DNSサーバを構築するための設定手順を以下に示す。

B.1 ビューの設定

BINDの設定ファイル/etc/named.confの編集を行う。編集を行った箇所は、opntionsセクション内の先頭 2行

と、loggingセクション以降である。

[root@rpi2 ˜]# vi /etc/named.conf

options {

listen-on port 53 { any; };

// listen-on-v6 port 53 { ::1; };

directory "/var/named";

dump-file "/var/named/data/cache_dump.db";

statistics -file "/var/named/data/named_stats.txt";

memstatistics -file "/var/named/data/named_mem_stats.txt";

allow-query { any; };

recursion yes;

dnssec-enable yes;

dnssec-validation yes;

dnssec-lookaside auto;

/* Path to ISC DLV key */

bindkeys-file "/etc/named.iscdlv.key";

managed-keys-directory "/var/named/dynamic";

pid-file "/run/named/named.pid";

session-keyfile "/run/named/session.key";

};

logging {

channel default_debug {

file "data/named.run";

severity dynamic;

};

};

view "external" {

match-clients { any; };

recursion no;

allow-transfer { none; };

zone "." IN {

type hint;

file "named.ca";

};

include "/etc/named.rfc1912.zones";

include "/etc/named.root.key";

zone "ysato.net" {

type master;

17

file "ysato.net.wan";

allow-update { none; };

};

zone "2.168.192.in-addr.arpa" {

type master;

file "2.168.192.in-addr.arpa.db";

allow-update { none; };

};

};

B.2 正引きゾーンの作成

ホスト名を IPアドレスに変換するための正引きゾーン/var/named/ysato.net.wanを作成する。

[root@rpi2 ˜]# vi /var/named/ysato.net.wan

$TTL 86400

@ IN SOA ysato.net. root.ysato.net. (

2015111302 ; serial

3600 ; refresh 1hr

900 ; retry 15min

604800 ; expire 1w

86400 ; min 24hr

)

IN NS dns.ysato.net.

IN A 192.168.2.4

dns IN A 192.168.2.2

ldap IN A 192.168.2.3

www IN CNAME ysato.net.

B.3 逆引きゾーンの作成

IPアドレスをホスト名に変換するための逆引きゾーン/var/named/2.168.192.in-addr.arpa.dbを作成する。

[root@rpi2 ˜]# vi /var/named/2.168.192.in-addr.arpa.db

$TTL 86400

@ IN SOA ysato.net. root.ysato.net. (

2015111303 ; Serial

3600 ; Refresh

900 ; Retry

604800 ; Expire

3600) ; Minimum

IN NS dns.ysato.net.

2 IN PTR dns.ysato.net.

3 IN PTR ldap.ysato.net.

4 IN PTR www.ysato.net.

18

B.4 IPv6の無効化

IPv6を無効にするために、/etc/hostsの IPv6に関する行をコメントアウトする。

[root@rpi2 ˜]# vi /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

また、/etc/sysconfig/namedを編集し、BINDが IPv4専用モードで起動するように設定する。

[root@rpi2 ˜]# vi /etc/sysconfig/named

OPTIONS="-4"

B.5 順序設定ファイルの変更

名前解決を hosts、dnsの順で行うために、次に示すように編集する。

[root@rpi2 ˜]# vi /etc/host.conf

order hosts,bind

また、/etc/nsswitch.confを編集し、hostsの設定を次のように変更する。

[root@rpi2 ˜]# vi /etc/nsswitch.conf

(略)

#hosts: db files nisplus nis dns

hosts: files dns myhostname

B.6 ファイアウォールの設定

DNSサーバ上のファイアーウォールに DNSサービスを許可させる。

[root@rpi2 ˜]# firewall -cmd --add-service=dns

[root@rpi2 ˜]# firewall -cmd --add-service=dns --permanent

B.7 NICの設定

nmtui コマンドを入力し、NetworkManager を起動する。Edit a connection を選択し、有効な NIC の設定を図

11のように変更する。設定後は、NetworkManagerを再起動し、設定を反映させる。

19

図 11 NICの設定

B.8 BINDの起動

BINDの起動を確認する。また、再起動後に BINDが自動起動するように設定する。

[root@rpi2 ˜]# systemctl start named

[root@rpi2 ˜]# systemctl enable named

20

付録 C Webサーバの実装

Webサーバを構築するための設定手順を以下に示す。

C.1 脆弱サイトの作成

/var/www/html/に exploit siteディレクトリを作成し、脆弱サイトで使用する CSSライブラリを配置する。

[root@rpi2 ˜]# mkdir /var/www/html/exploit_site/

[root@rpi2 ˜]# cd /var/www/html/exploit_site/

[root@rpi2 exploit_site]# wget https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap.min.css

作成した exploit siteディレクトリ内に、リスト 2-8に示す脆弱サイトのソースファイルを作成する。

リスト 2 index.php

<?php

ini_set("display_errors", Off);

error_reporting(E_ALL);

require "database.php";

require "ldapserver.php";

$errorMessage;

session_start();

if (isset($_POST["login"]))

{

try {

onLogInClick();

}

catch(Exception $e){

$errorMessage = $e->getMessage();

}

}

// ログインボタンがクリックされたら検証する

function onLogInClick()

{

$auth = isldapAuth($_POST["name"],$_POST["pass"]);

if($auth)

{

if (chkGroup($auth, $_POST["name"]))

{

session_regenerate_id(true);

$_SESSION["USERID"] = $_POST["name"];

header("Location: main.php");

}

else

{

throw new Exception("アクセス権限がありません。");

}

}

21

else

{

throw new Exception(" N a m eまたは P a s s w o r dに誤りがあります。 ");

}

}

?>

<!DOCTYPE html>

<html>

<head>

<title>exploit site - ログイン </title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<!-- Bootstrap -->

<link rel="stylesheet" href="./bootstrap.min.css">

<link rel="stylesheet" href="./main.css" />

</head>

<body>

<div class="contents">

<div id="abstract">

<h2>脆弱サイト </h2>

<p> W e bアプリケーションの脆弱性を体験できるサイトです。 </p>

</div>

<div id="main_content">

<h3>ログイン </h3>

<?php if (!empty($errorMessage)) { ?>

<div class="alert alert-danger" role="alert">

<strong style="margin-right: 1em;">エラー

<?php echo $errorMessage;?>

</div>

<?php } ?>

<form method="post" action="./index.php">

<div class="form-group">

<label for="input-name">Name</label>

<input required type="text" class="form-control" id="input-

name" name="name" placeholder="Enter name">

</div>

<div class="form-group">

<label for="input-pass">Password </label>

<input required type="text" class="form-control" id="input-

pass" name="pass" placeholder="Enter password">

</div>

<input type="submit" class="btn btn-default" id="submit-button"

name="login" value="Sign In">

</form>

</div>

</div>

</body>

</html>

22

リスト 3 ldapserver.php

<?php

$base[’dn’] = ’dc=my-ldap,dc=server ’;

$base[’host’] = ’192.168.2.3’;

$base[’port’] = 389;

$base[’people ’] = ’ou=People,’.$base[’dn’];

$base[’group’] = ’ou=Group,’.$base[’dn’];

$base[’admgr’] = ’cn=admin,’.$base[’group ’];

$base[’stfgr’] = ’cn=staff,’.$base[’group ’];

function isldapAuth ($name,$pass) {

global $base;

$link_id = ldap_connect($base[’host’],$base[’port ’]);

if ($link_id) {

$ldapdn = ’uid=’.$name.’,’.$base[’people ’];

$attrs = array(’memberof ’);

ldap_set_option($link_id , LDAP_OPT_PROTOCOL_VERSION , 3);

ldap_set_option($link_id , LDAP_OPT_REFERRALS , 0);

$bind = ldap_bind($link_id ,$ldapdn,$pass);

if ($bind) {

return $link_id;

}

}

else {

return false;

}

}

function chkGroup ($link_id , $name) {

global $base;

$filt = ’(& (uid=’.$name.’) (| (memberof=’.$base[’admgr ’].’)(memberof=’.$base["

stfgr"].’)))’;

$res = ldap_search($link_id , $base[’people ’], $filt);

$info = ldap_get_entries($link_id ,$res);

print_r($info);

if ($info[’count ’]) {

return $link_id;

}

else {

return false;

}

}

?>

リスト 4 main.php

<?php

session_start();

23

// ログイン状態のチェック

if (!isset($_SESSION["USERID"]))

{

header("Location: logout.php");

exit;

}

?>

<!DOCTYPE html>

<html>

<head>

<title>exploit site - メイン </title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<!-- Bootstrap -->

<link rel="stylesheet" href="./bootstrap.min.css">

<link rel="stylesheet" href="./main.css" />

</head>

<body>

<div class="contents">

<div id="abstract">

<h2>ようこそ </h2>

<p>このページでは会員検索が行えます。 </p>

</div>

<div id="main_content">

<h3>会員検索 </h3>

<form class="input-group" method="post" action="./search.php">

<label for="input-name">Name</label>

<input required type="text" class="form-control" id="input-name"

name="name" placeholder="Enter name">

<button type="submit" style="margin: 0; margin-top: 25px"

class="btn btn-default" name="search" value="Search">

検索

</button>

</form>

</div>

<div style="margin: auto; width: 500px; margin-top: 20px;">

<form action="./logout.php" method="GET" style="margin-top:20px;">

<input type="submit" class="btn btn-default" id="submit-button"

value="Sign Out"/>

</form>

</div>

</div>

</body>

</html>

24

リスト 5 search.php

<?php

require "database.php";

session_start();

// ログイン状態のチェック

if (!isset($_SESSION["USERID"]))

{

header("Location: logout.php");

exit;

}

$tbody_str = "";

$result = selectFromUser("name = ’".$_POST["name"]."’");

while ($row = $result->fetch_assoc())

{

$tbody_str .= "<tr>" .td($row["id"]) .td($row["name"]) .td($row["tel"]) ."</tr>";

}

function td($value)

{

return "<td>".$value."</td>";

}

?>

<!DOCTYPE html>

<html>

<head>

<title>exploit site - 検索結果 </title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<!-- Bootstrap -->

<link rel="stylesheet" href="./bootstrap.min.css">

<link rel="stylesheet" href="./main.css" />

</head>

<body>

<div class="contents">

<div id="abstract">

<h2>検索結果 </h2>

<p><?php echo $_POST["name"]?> の検索結果です。 </p>

</div>

<div id="main_content">

<?php if (empty($tbody_str)) { ?>

<div class="alert alert-danger" role="alert">

該当する結果がありませんでした。

</div>

<?php } ?>

<table class="table">

<thead>

<tr>

25

<th>ID</th>

<th>Name</th>

<th>Telephone </th>

</tr>

</thead>

<tbody>

<?php echo $tbody_str; ?>

</tbody>

</table>

</div>

</div>

</body>

</html>

リスト 6 database.php

<?php

// D B接続設定

$db[’host’] = "localhost";

$db[’user’] = "root";

$db[’pass’] = "";

$db[’dbname ’] = "web";

//usage predicate: name = ’hogeo’

function selectFromUser($predicate)

{

global $db;

$mysqli = new mysqli($db[’host’], $db[’user’], $db[’pass’], $db[’dbname ’]);

$result;

if ($predicate == "")

{

$result = selectAll($mysqli);

}

else

{

$result = selectUserWhereName($mysqli, $predicate);

}

$mysqli->close();

return $result;

}

function selectAll($mysqli)

{

return $mysqli->query("SELECT * FROM user;");

}

function selectUserWhereName($mysqli, $predicate)

{

return $mysqli->query("SELECT * FROM user WHERE " .$predicate .";");

}

?>

リスト 7 logout.php

26

<?php

session_start();

$_SESSION = array();

@session_destroy();

header("Location: index.php");

?>

リスト 8 main.css

.contents {

margin: 20px;

}

#submit-button {

color: #FF7187;

border-color: #FF7187;

margin-top: 10px;

}

#abstract {

text-align: center;

margin: auto;

margin-bottom: 40px;

}

#main_content {

margin: auto;

width: 500px;

padding: 30px;

border-color: #AFAFAF;

border-width: 1px;

border-style: solid;

}

#main_content h3 {

margin-top: 0;

margin-bottom: 20px;

}

作成したソースコードのパーミッションを設定する。

[root@rpi2 ˜]# chmod 705 /var/www/html/exploit_site/*

[root@rpi2 ˜]# ls -al /var/www/html/exploit_site/

total 148

drwxr-xr-x 2 root root 4096 Jan 1 09:04 .

drwxr-xr-x 3 root root 4096 Feb 21 2016 ..

-rwx---r-x 1 root root 114011 Feb 21 2016 bootstrap.min.css

-rwx---r-x 1 root root 898 Feb 21 2016 database.php

-rwx---r-x 1 root root 2980 Feb 21 2016 index.php

-rwx---r-x 1 root root 1090 Feb 21 2016 ldapserver.php

-rwx---r-x 1 root root 216 Feb 21 2016 logout.php

-rwx---r-x 1 root root 408 Feb 21 2016 main.css

-rwx---r-x 1 root root 1825 Feb 21 2016 main.php

-rwx---r-x 1 root root 1753 Feb 21 2016 search.php

27

C.2 MariaDBの起動

MariaDBを起動する。また、再起動後に自動起動するように設定する。

[root@rpi2 ˜]# systemctl start mariadb

[root@rpi2 ˜]# systemctl enable mariadb

C.3 データベースの作成

MariaDBに webデータベースを作成し、Webアプリケーションで使用するテーブルとレコードを定義する。

[root@rpi2 ˜]# mysql -u root

MariaDB [(none)]> CREATE DATABASE web;

MariaDB [(none)]> USE web;

MariaDB [(none)]> CREATE TABLE ‘user‘ (

‘id‘ int(11) NOT NULL AUTO_INCREMENT ,

‘name‘ varchar(45) NOT NULL,

‘tel‘ varchar(45) NOT NULL,

‘pass‘ varchar(45) NOT NULL,

PRIMARY KEY (‘id‘),

UNIQUE KEY ‘id_UNIQUE ‘ (‘id‘),

UNIQUE KEY ‘name_UNIQUE ‘ (‘name‘)

) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=latin1;

MariaDB [(none)]> INSERT INTO ‘user‘ VALUES

(1,’hogeo’,’1001’,’hoge’),

(2,’pugeo’,’1012’,’puge’),

(3,’taro’,’1008’,’taro’),

(4,’fooko’,’1003’,’foo’),

(5,’barko’,’1005’,’bar’);

MariaDB [(none)]> exit

C.4 ファイアウォールの設定確認

ファイアーウォールの設定を確認し、httpが許可されていることを確認する。

[root@rpi2 ˜]# firewall -cmd --list-all

public (default, active)

interfaces: eth0

sources:

services: dhcpv6-client http https ssh

ports:

masquerade: no

forward-ports:

icmp-blocks:

rich rules:

28

C.5 NICの設定

nmtui コマンドを入力し、NetworkManager を起動する。Edit a connection を選択し、有効な NIC の設定を図

12のように変更する。設定後は、NetworkManagerを再起動し、設定を反映させる。

図 12 NICの設定

C.6 Apacheの起動

Apacheを起動する。また、再起動後に自動起動するように設定する。

[root@rpi2 ˜]# systemctl start httpd

[root@rpi2 ˜]# systemctl enable httpd

29

付録 D ファイアーウォールの実装

ファイアーウォールを構築するための設定手順を以下に示す。

D.1 Snort

D.1.1 ルールファイルのダウンロード

Snort公式サイト1)よりルールファイル（Registerd rules）をダウンロードし、ホームディレクトリに配置する。

ただし、Registerd rulesファイルをダウンロードするためには、Snort公式サイトからアカウント登録してログイ

ンする必要がある。

D.1.2 ルールファイルの配置

ダウンロードしたルールファイルを snortrules-snapshot-2972.tar.gzとしたときの手順を次に示す。

[root@rpi2 ˜]# mkdir /etc/snort

[root@rpi2 ˜]# cd /etc/snort/

[root@rpi2 snort]# tar zxvf ˜/snortrules -snapshot -2972.tar.gz

[root@rpi2 snort]# cp ./etc/* .

[root@rpi2 snort]# cp ˜/snort -2.9.8.0/etc/* .

D.1.3 ダイナミックルールファイルの配置

[root@rpi2 ˜]# mkdir /usr/local/lib/snort_dynamicrules

[root@rpi2 ˜]# cp /etc/snort/so_rules/precompiled/RHEL-6-0/i386/2.9.7.6/* /usr/local/

lib/snort_dynamicrules/

D.1.4 ローカルルールの記述

HTTPのパケットを検知するように、/etc/snort/rules/local.rulesを編集する。

[root@rpi2 ˜]# vi /etc/snort/rules/local.rules

（略）

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"HTTP/80 Rule"; sid:1000021; rev

:1;)

ところで、行頭の「alert」を「drop」に書き換えれば、Snortは検知したパケットを破棄するように動作する。

D.1.5 空のブラックリストファイル及びホワイトリストファイルの作成

[root@rpi2 ˜]# touch /etc/snort/rules/white_list.rules /etc/snort/rules/black_list.

rules

D.1.6 Snortの設定

/etc/snort/snort.confを次のように編集する。

1) https://www.snort.org/

30

[root@rpi2 ˜]# vi /etc/snort/snort.conf

#ipvar HOME_NET any

ipvar HOME_NET [192.168.2.253/32, 192.168.2.0/26]

#ipvar EXTERNAL_NET any

ipvar EXTERNAL_NET !$HOME_NET

（略）

#var RULE_PATH ../rules

#var SO_RULE_PATH ../so_rules

#var PREPROC_RULE_PATH ../preproc_rules

var RULE_PATH /etc/snort/rules

var SO_RULE_PATH /etc/snort/so_rules

var PREPROC_RULE_PATH /etc/snort/preproc_rules

（略）

#var WHITE_LIST_PATH ../rules

#var BLACK_LIST_PATH ../rules

var WHITE_LIST_PATH /etc/snort/rules

var BLACK_LIST_PATH /etc/snort/rules

（略）

config daq: nfq

config daq_dir: /usr/local/lib/daq

config daq_mode: inline

#config daq_var: <type >

config policy_mode: inline

（略）

#dynamicdetection directory /usr/local/snort/lib/snort_dynamicrules

D.1.7 グループ及びユーザの作成

[root@rpi2 ˜]# groupadd -g 511 snort

[root@rpi2 ˜]# useradd snort -u 511 -d /var/log/snort -s /sbin/nologin -c ’Snort User’

-g snort

[root@rpi2 ˜]# chown -R snort.snort /etc/snort

[root@rpi2 ˜]# chown -R snort.snort /var/log/snort

D.1.8 パーミッションの変更

[root@rpi2 ˜]# cd /usr/local/lib/

[root@rpi2 lib]# chown -R snort.snort snort* pkgconfig

[root@rpi2 lib]# chmod -R 700 snort* pkgconfig

[root@rpi2 lib]# cd /usr/local/bin/

[root@rpi2 bin]# chown snort.snort daq-modules-config u2*

[root@rpi2 bin]# chmod 700 daq-modules-config u2*

31

D.1.9 Snortの起動

Snortの起動を確認する。

[root@rpi2 ˜]# snort -Q --daq nfq --daq-var queue=2 -c /etc/snort/snort.conf -l /var/

log/snort -A fast

（略）

Commencing packet processing (pid=15635)

Decoding Raw IP4

Decoding Raw IP4の文字が出力された後、Snortはパケットを検知し続ける。Snortを終了する場合は、Ctrl + C

を入力すれば良い。また、デーモンとして起動する場合には、Snortの起動オプションに-Dを追加すれば良い。

32

D.2 ネットワーク

D.2.1 NICの設定

USB-LAN変換コネクタを挿入している状態で、nmtuiコマンドを入力し、NetworkManagerを起動する。Edit

a connectionを選択し、eth0と eth1の設定を図 13と図 14のように行う。

図 13 eth0の設定

図 14 eth1の設定

33

設定の反映と確認を行う。

[root@rpi2 ˜]# systemctl restart NetworkManager

[root@rpi2 ˜]# nmcli device show eth0

GENERAL.DEVICE: eth0

GENERAL.TYPE: ethernet

GENERAL.HWADDR: B8:27:EB:65:72:79

GENERAL.MTU: 1500

GENERAL.STATE: 100 (connected)

GENERAL.CONNECTION: eth0

GENERAL.CON-PATH: /org/freedesktop/NetworkManager/

ActiveConnection/0

WIRED-PROPERTIES.CARRIER: on

IP4.ADDRESS[1]: 192.168.2.1/26

IP4.GATEWAY:

IP4.DNS[1]: 192.168.2.2

IP6.ADDRESS[1]: fe80::ba27:ebff:fe65:7279/64

IP6.GATEWAY:

[root@rpi2 ˜]# nmcli device show eth1

GENERAL.DEVICE: eth1

GENERAL.TYPE: ethernet

GENERAL.HWADDR: 00:22:CF:F9:2B:7E

GENERAL.MTU: 1500

GENERAL.STATE: 100 (connected)

GENERAL.CONNECTION: eth1

GENERAL.CON-PATH: /org/freedesktop/NetworkManager/

ActiveConnection/1

WIRED-PROPERTIES.CARRIER: on

IP4.ADDRESS[1]: 192.168.2.253/26

IP4.GATEWAY: 192.168.2.254

IP4.DNS[1]: 192.168.2.2

IP6.ADDRESS[1]: fe80::222:cfff:fef9:2b7e/64

IP6.GATEWAY:

D.2.2 ルーティングの確認

NICを設定すると、ルーティング設定が自動的に行われる。次に示すコマンドで、ルーティング設定の確認を

行う。

[root@rpi2 ˜]# netstat -rn

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

0.0.0.0 192.168.2.254 0.0.0.0 UG 0 0 0 eth1

192.168.2.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0

192.168.2.0 0.0.0.0 255.255.255.192 U 0 0 0 eth0

192.168.2.192 0.0.0.0 255.255.255.192 U 0 0 0 eth1

192.168.2.192 0.0.0.0 255.255.255.192 U 0 0 0 eth1

この実行結果の意味を以下に示す。

• 192.168.2.0/26上の IPアドレスへは eth0を経由して直接接続する

• 192.168.2.192/26上の IPアドレスへは eth1を経由して直接接続する

• それ以外のネットワークにある IPアドレスへは eth1を経由して 192.168.2.254に接続する

34

D.3 ファイアーウォール

D.3.1 ゾーンの設定

externalゾーンと dmzゾーンの設定を変更する。

インタフェースの変更

[root@rpi2 ˜]# firewall -cmd --change-interface=eth1 --zone=external --permanent

[root@rpi2 ˜]# firewall -cmd --change-interface=eth0 --zone=dmz --permanent

サービスの許可

[root@rpi2 ˜]# firewall -cmd --add-service=http --zone=external --permanent

[root@rpi2 ˜]# firewall -cmd --add-service=http --zone=dmz --permanent

[root@rpi2 ˜]# firewall -cmd --add-service=dns --zone=external --permanent

[root@rpi2 ˜]# firewall -cmd --add-service=dns --zone=dmz --permanent

I Pマスカレードの有効化

[root@rpi2 ˜]# firewall -cmd --add-masquerade --zone=dmz --permanent

D.3.2 パケットの転送設定

HTTPのパケットは Snortで検査するため、パケットの転送設定を行う。

[root@rpi2 ˜]# firewall -cmd --direct --add-rule ipv4 nat PREROUTING 0 -i eth1 -d

192.168.2.253 -p tcp --dport 80 -j DNAT --to 192.168.2.4:80 --permanent

[root@rpi2 ˜]# firewall -cmd --direct --add-rule ipv4 filter FORWARD 0 -p tcp --dport

80 -j NFQUEUE --queue-num 2 --permanent

D.3.3 設定の反映

firewalldを再起動して、設定を反映させる。

[root@rpi2 ˜]# firewall -cmd --reload

再起動後、設定が反映されていることを確認する。

[root@rpi2 ˜]# firewall -cmd --list-all --zone=external

external (active)

interfaces: eth1

sources:

services: dns http ssh

ports:

masquerade: yes

forward-ports:

icmp-blocks:

rich rules:

[root@rpi2 ˜]# firewall -cmd --list-all --zone=dmz

dmz (active)

interfaces: eth0

sources:

services: dns http ssh

ports:

masquerade: yes

forward-ports:

icmp-blocks:

35

rich rules:

[root@rpi2 ˜]# firewall -cmd --direct --get-all-rules

ipv4 nat PREROUTING 0 -i eth1 -d 192.168.2.253 -p tcp --dport 80 -j DNAT --to

192.168.2.4:80

ipv4 filter FORWARD 0 -p tcp --dport 80 -j NFQUEUE --queue-num 2

36

付録 E ルータの設定

ルータの設定には、ターミナル操作を行うためのコンピュータが必要である。以下では、ターミナルソフトウェ

アとして Tera Term Version 4.79 がインストールされたWindows 10 Pro (OS ビルド 10586.104) が動作するコン

ピュータを使用して設定を行う。

以下に、インターネットとイントラネットの境界に位置するルータの設定手順を示す。

E.1 接続

コンソールケーブルを用いて、ルータの CONSOLE ポートとコンピュータの USB を接続する。次に、Tera

Termを起動し、「新しい接続」画面からシリアル接続を選択する (図 15)。

図 15 Tera Termによるルータのシリアル接続

ルータの電源を投入し、Cisco IOS の起動を待機する。起動後は、次に示すようにグローバルコンフィグレー

ションモードに移行する。

Router> enable

Router# configure terminal

Router(config)#

E.2 IPアドレスの設定

インターネット側の FastEthernet0に 192.168.0.2/24を、イントラネット側の FastEthernet1に 192.168.2.254/26

を設定する。

Router(config)# interface FastEthernet0

Router(config-if)# ip address 192.168.0.2 255.255.255.0

Router(config-if)# no shutdown

Router(config-if)# interface FastEthernet1

Router(config-if)# ip address 192.168.2.254 255.255.255.192

Router(config-if)# no shutdown

Router(config-if)# exit

37

E.3 ルーティングの設定

宛先ネットワーク 192.168.2.0/26に対するネクストホップアドレスとして 192.168.2.253を設定する。

Router(config)# ip route 192.168.2.0 255.255.255.192 192.168.2.253

Router(config)# exit

E.4 設定の確認

show running-configコマンドを実行して設定の確認を行う。

Router# show running-config

（略）

interface FastEthernet0

ip address 192.168.0.2 255.255.255.0

interface FastEthernet1

ip address 192.168.2.254 255.255.255.192

（略）

ip route 192.168.2.0 255.255.255.192 192.168.2.253

E.5 コンフィグレーションの保存

現在の設定がルータ起動時に読み込まれるように設定する。

Router# copy running-config startup-config

38

